

Motivation

Background:

- Training process of generative model requires loads of training data. • Training data (e.g. art paintings) is considered both private property and subject to copyright protection by its owners.

Goals:

Evaluating the value of training data for generated images, thus the credits could be distributed to data owners fairly.

Challenges

• Lack of metrics to determine data valuation (1)

- \checkmark Generative model aims to capture the underlying distribution of data, which have **no explicit labels** or ground-truth **for valuation**.
- \checkmark Evaluation metrics (e.g. FID, IS) are not objective to determine the value of generated data.

Expensive Computational Cost. (2)

- ✓ Generative models have complex architectures with a large number of parameters, which requires substantial computational costs.
- ✓ Existing methods (Shapley Value, Banzhaf et.) is impractical for generative model due to the need for retraining and high computational cost.

Matching-based Data Valuation for Generative Model

Jiaxi Yang^{1,2}, Wenlong Deng², Benlin Liu³, Yangsibo Huang⁴, Xiaoxiao Li² ¹University of Electronic Science and Technology of China, ²University of British Columbia, ³University of Washington, ⁴Princeton University

are regarded as contributors, are recalled by Wasserstein distance.

Value Calculation:

- For the data valuation for generative model, we propose GMValuator, which is the first method to address this problem.
- For one generated data sample, the utility function of each training sample can be denoted as:

 $\mathcal{V}(x_i, \hat{x}_j)$

sample, which can be presented as follows:

 $\phi(x_i, \hat{X}) =$

RA1: The generated data should exhibit a higher degree of similarity to the data points used to train the generator than the ones not used for training, despite originating from the same distribution. (Figure 1) **RA2:** The data points (used for training) are expected to have a higher value than data points that are not used for training. (Table 1)

RA3: Training data points that contribute more to the generated data (high values) are expected to exhibit greater semantic alignment to the fixedgenerated dataset.

High Value

$$D = egin{cases} rac{\exp{(-d_i)}}{\sum_{i=1}^{K}\exp{(-d_i)}} & x_i \in \mathcal{P} \ 0 & x_i \notin \mathcal{P} \ s.t. & d_1, d_2, ..., d_k > 0 \end{cases}$$

With the fixed generated dataset, the value of a training data sample can be calculated by summing up all its utility values for each training data

$$\sum_{j}^{n} \gamma_{i,j} \mathcal{V}(x_i, \hat{x}_j), i \in X, j \in \hat{X}$$

Experiments

$H_{0}: \phi(D_{i}, S, \mu_{i}) > \phi(D_{j}, S, \mu_{i}) \\ H_{1}: \phi(X_{i}, S, \mu_{i}) \le \phi(X_{j}, S, \mu_{i}), i \in X_{v1}, j \in X_{v2}$		
	BigGAN	Classifier-free Guidance Diffusion
Average value (v1)	1.632352	0.369565
Average value (v2)	0.319654	0.030434
P-value	6.937027×10^{-68}	8.053195×10^{-55}
T-statistic	17.924512	15.947860
Significance level	0.01	0.01
Result	p-value less than 0.01, reject H_0 , value of v2 less than v1 averagely	p-value less than 0.01, reject H_0 , value of v2 less than v1 averagely

RA 2

Low Value