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Motivation Methodology

Experiments

• Training process of generative model requires loads of training data.
• Training data (e.g. art paintings) is considered both private

property and subject to copyright protection by its owners.

Challenges

Background:

• Evaluating the value of training data for generated images, thus the
credits could be distributed to data owners fairly.

Goals:

• Lack of metrics to determine data valuation (1)
ü Generative model aims to capture the underlying distribution of data,
which have no explicit labels or ground-truth for valuation.

ü Evaluation metrics (e.g. FID, IS) are not objective to determine the
value of generated data.

• Expensive Computational Cost. (2)
ü Generative models have complex architectures with a large number
of parameters, which requires substantial computational costs.

ü Existing methods (Shapley Value, Banzhaf et.) is impractical for
generative model due to the need for retraining and high
computational cost.

GMValuator Architecture:

Value Calculation:
• For the data valuation for generative model, we propose GMValuator,
which is the first method to address this problem.

• For one generated data sample, the utility function of each training
sample can be denoted as:

• With the fixed generated dataset, the value of a training data sample can
be calculated by summing up all its utility values for each training data
sample, which can be presented as follows:

RA1: The generated data should exhibit a higher degree of similarity to the
data points used to train the generator than the ones not used for training,
despite originating from the same distribution. (Figure 1)

(1) Similarity & Valuation: 
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We calculate similarity between training and generated data to determine 
data valuation as generative model optimize the distribution similarity.

(2)  Image Similarity Matching:

(2)

• To fast calculate the similarity, we first utilize Product Quantization
(PQ) to compress the training images.

• Given a generated image, top k most similar training images, which
are regarded as contributors, are recalled by Wasserstein distance.

RA2: The data points (used for training) are expected to have a higher
value than data points that are not used for training. (Table 1)

RA3: Training data points that contribute more to the generated data (high
values) are expected to exhibit greater semantic alignment to the fixed-
generated dataset.
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